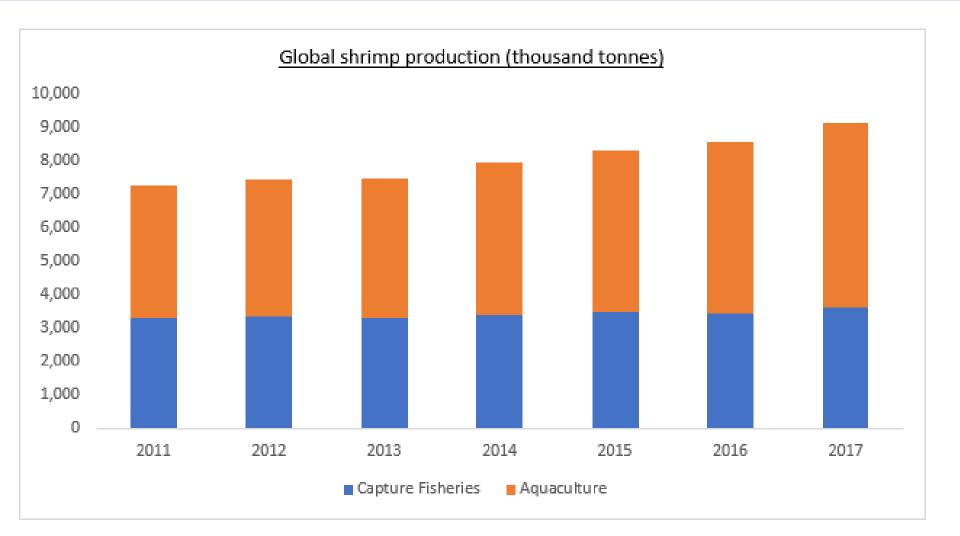


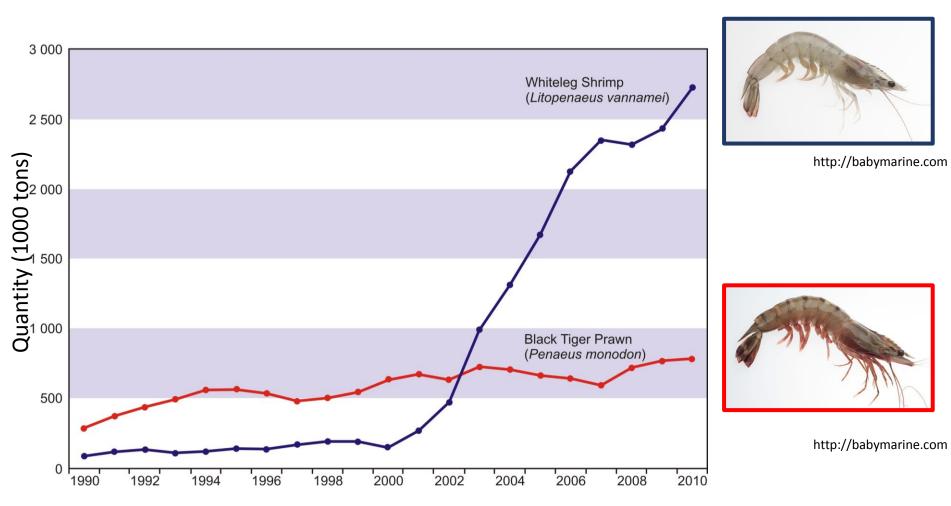
European Regional Development Fund


EUROPEAN UNION

Small scale shrimp RAS system: design, operation, parameters, results

Halina Kendzierska, Ph.D.

17-20 V 2021, AquaVIP Gdynia summer school


WORLDWIDE PRODUCTION OF SHRIMP

aqua

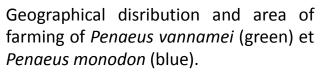
Source: FAO

SHIFT IN WORLDWIDE PRODUCTION OF SHRIMP IN AQUACULTURE

www.eurofishmagazine.com

WHITELEG SHRIMP PENAEUS (LITOPENAEUS) VANNAMEI (BOONE, 1931)

This shrimp is commonly called the whiteleg shrimp, Mexican white shrimp or white shrimp.


It grows to a maximum weight of approximately 120 g (females). Males are relatively smaller.

This shrimp is greyish-white in color.

Rostrum moderately long with 7-10 dorsal and usually, 2-4 ventral teeth.

una

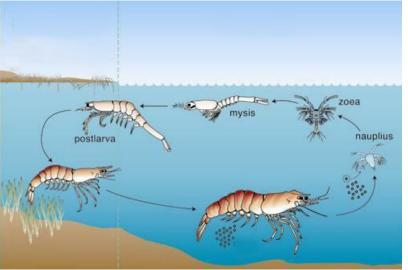
WHITELEG SHRIMP NATURAL DISTRIBUTION AND FARMING AREA

©lfremer

www.pngegg.com

aqua

http://en.aquaculture.ifremer.fr


CONDITIONS IN THE AREAS OF NATURAL OCCURRENCE OF WHITE SHRIMP

Parameter	Min	Мах		
Temperature	23,64 º C	28,79 º C		
Silicates	0,76 μmol/L	3,64 μmol/L		
Phosphates	0,11 μmol/L	0,25 μmol/L		
Oxygen	4,47 ml/L	4,86 ml/L		
Oxygen saturation	99,39%	99,54 %		
Nitrites	0,19 μmol/L	0,33 μmol/L		
Depth	0,5 m	20,65 m (up tp 75 m)		

http://www.eol.org/pages/1036948/overview

Dichmont, C. M. 1987. *Management strategies for an input Controlled Fishery Based on the Capture of short-lived tropical species: the example of Australia's Northern Prawn Fishery* (Doctoral dissertation, University of Tasmania).

WHITELEG SHRIMP PENAEUS (LITOPENAEUS) VANNAMEI (BOONE, 1931)

- a well-known species;
- fast growth rate (1.5-3 g / week, max. weight 120 g);
- tolerance to a wide range of salinity (0.5-45; optimum 15-25) and temperature (min. 15 °C, optimum 26-30 °C);
- the feed used may have a low protein content (20-35%) in comparison to other shrimp species;
- low food conversion factor app. 1.2;
- possible farming in high densities, even up to 400 individuals / m²;
- pathogen-free stocks guarantee the production of healthy larvae all year round;
- tolerates transport well;
- potential for the multitrophic aquaculture.

http://agritech.tnau.ac.in/fishery/fish_shrimps.html

Photo: Piotr Kendzierski

WHITELEG SHRIMP FARMING

https://blogs.umass.edu

https://www.worldwildlife.org

LAND-BASED PONDS

https://www.worldwildlife.org

WHITELEG SHRIMP FARMING

www.aquamaof.com

RECIRCULATING AQUACULTURE SYSTEM

BIOFLOC AQUAPONICS

http://english.vov.vn

RAS - RECIRCULATING AQUACULTURE SYSTEM

RAS - water exchange is limited and the use of biofiltration is required.

ADVANTAGES

- High conditions control
- Low exposure to pathogens;
- Low environmental impact;
- Flexible locations;
- Independence from external conditions;
- Minimal of space and water need;
- Production of fresh produce,
- Fewer regulatory constraints.

DISADVANTAGES

- High operational costs, mainly electricity and maintenance;
- Increased infrastructure costs;
- Higher skill level staff due the complexity of the system;
- Must provide all feed.

CROSS-BORDER DEVELOPMENT AND TRANSFER OF INNOVATIVE AND SUSTAINABLE AQUACULTURE TECHNOLOGIES IN THE SOUTH BALTIC AREA (INNOAQUATECH)

2016-2019

Demonstrating the sustainability and raising awareness for the possibility of crustacean production in RAS systems in Pomerania, Poland

Laboratory study - Growth and nutritional value of *Litopenaeus vannamei* from the small-scale laboratory culture

InnoAquaTech

M O R S K I INSTYTUT RYBACKI PAŃSTWOWY I N S T Y T U T BADAW C Z Y

THE FIRST EXPERIMENTAL SHRIMP FARM IN POLAND

THE FIRST EXPERIMENTAL SHRIMP FARM IN POLAND

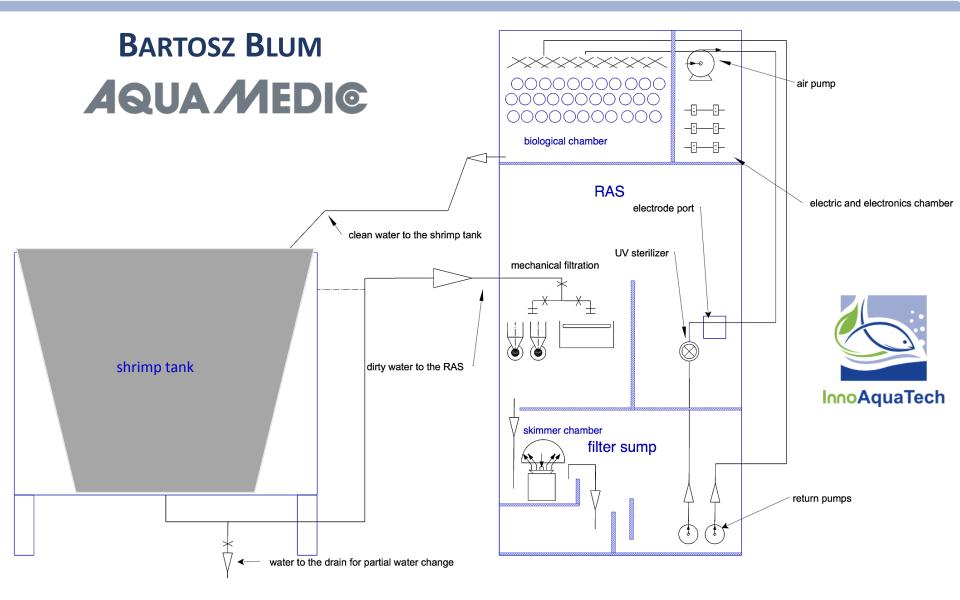
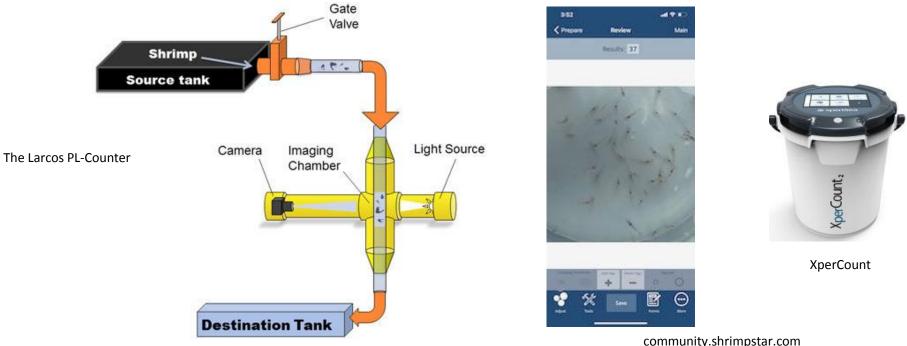


Photo: Halina Kendzierska

MINI SYSTEM: RAS - 500



SHRIMP IMPORT

- **The shrimps must be SPS** (*specific pathogen free*);
- Import post-larval (PL) stages shrimp.
- It is common for hatcheries to provide up to 30 % more PL than needed to account for mortality during transport and to boost perceived performance.
- PL counting is usually done by hand, counting a selection of the PL in their bags to estimate the average number per bag. There are some non-manual solutions to complete estimating.

SHRIMP IMPORT

- **The shrimps must be SPS** (*specific pathogen free*);
- Due to unstable weather conditions in US tropical zones and COVID-19 it is recommended in Europe to import shrimps from European hatchery: https://euroshrimp.net/europeanhatcherys/

White Panther Produktion GmbH

* Transport Mortality Allowance: 20 %

- Before shrimp transport the water conditions (temperature, salinity, pH) in the transport should be provide by producer.
- Acclimation is crucial. For reduction of metabolic rate during the transport, shrimps are placed in lowered temperature. Water parameters must be monitor. pH should be increase rather fast (0.1 every 15 minutes). Acclimation to other parameters is slow process.

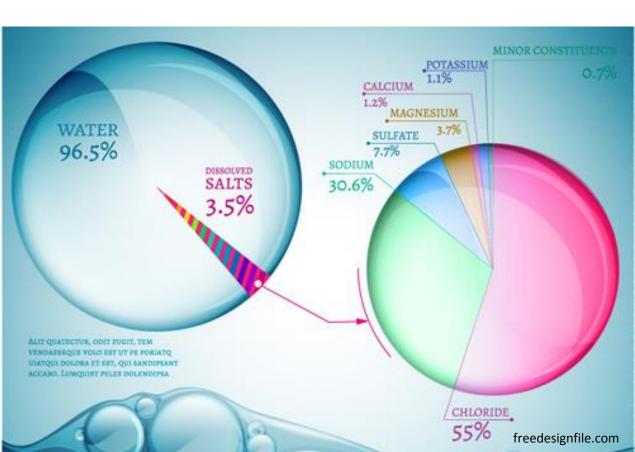
TEMPERATURE

Whiteleg shrimps tolerate a broad thermal spectrum (15-33 °C).

- The most favorable temperature for growth: 23-30 °C:
- Thermal optimum for small specimens (1g): 30 °C
- Thermal optimum of larger specimens (12-18 g): 27 °C.

(Wyban and Sweeny 1991)

Higher temperatures reduce the likelihood of viral diseases (e. g. WSSV or TSV).


SEA SALT AND REQUIRED IONS

- Whiteleg shrimps tolerate broad spectrum of salinity 0.5-45; (experiments up to 65);
- The cultivation is carried out in the salinity range of 7-34;
- Adult the iso-osmotic point is 10-15;
- Potassium (K)
- Magnesium (Mg)
- Calcium (Ca)
- Ca: K 1: 1
- Water supplementation

Costs!

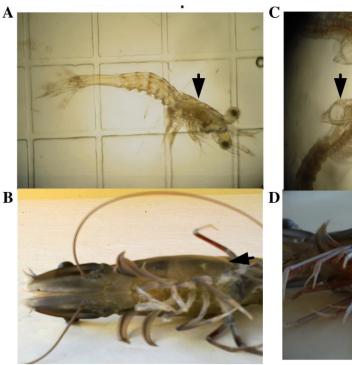
• Supplementation with food

Wyban and Sweeny, 1991

SEA SALT

SW- Sea water; 1 – Instant Ocean; 2 - Tropic Marin; 3 - Marine Mix; 4 - Reef Crystal; 5 – Rea Sea Salt; 6 – Kent; 7- Coralife; 8 – SeaChem' MW – molar mass (g/mol)

	SW	1	2	3	4	5	б	7	8	MW	
ppt	35	29.65	32.64	29.40	28.91	30.07	28.85	28.39	29.54		
Major Catio	ns (mmol kg	¹)									
Na ⁺	470	462	442	467	461	472	460	464	504	23.0	
K+	10.2	9.4	9.1	10.1	9.5	9.9	10.1	9.3	10.7	39.1	
Mg ⁺² Ca ⁺²	53	52	46	53	50	55	57	63	37	24.3	
Ca ⁺²	10.3	9.4	9.1	10.1	9.5	9.9	10.1	9.3	10.7	40.1	
Sr ⁺¹	0.09	0.19	0.08	0.15	0.08	0.10	0.10	0.08	0.21	87.6	
Sum	607	594	561	601	589	610	605	620	609		- Marii
Major Anior	ıs (mmol kg ⁻¹)									
CI	َ 550 [°]	521	497	538	520	537	531	566	516	35.5	
SO4-2	28	23	21	28	27	25	24	15	37	32.1	The aquatic life science con
rcō,	1.90	1.90	1.10	2.10	0.75	1.08	2.52	0.32	0.12	12.0	
ГВ [*]	0.42	0.44	0.36	0.41	0.65	0.54	0.54	1.26	4.90	10.8	
Sum	608	569	541	596	574	588	582	597	595		
Nutrients (µ	mol kg-1)										
PO₄:P	0.20	0.05	1.20	0.46	0.32	0.37	0.16	0.95	0.57	31.0	
NO ₃ :N	0.20	1.00	2.20	1.63	5.00	0.79		6.30	18.4	14.0	
NH4:N	0.20	10.2	0.55	9.2	7.8	5.2	11.9	8.4	0.7	14.0	
SiO,:Si	5	4.2	3.2	11.5	5.9	4.5	4.1	2.7	11.3	28.1	
DOP:P	0.2	0.1	0	0.2	0.2	0.1	0.1	0.2	0.1	31.0	
DON:N	10	2.9	5.5	8.2	6.3	1.9	2.4	11.2	3.1	14.0	
TOC:C	50	29	32	29	28	29	28	28	22	12.0	
pH	8.25	8.35	8.90	8.49	9.28	8.69		9.17	8.81		
TA	2.3	2.3	1.5	3.1	3.2	1.6	2.7	1.5	2.2		


Atkinson, M. J., & Bingman, C. (1997). Elemental composition of commercial seasalts. Journal of Aquariculture and Aquatic Sciences, 8(2), 39-43.

SALT SHORTAGE OR SURPLUS

Mineral deposition on shrimp

L. vannamei A - M3 in salinity 20; B – adult in salinity 5; C - M3 in salinity 32; D – adult in salinity 32.

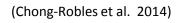


Figure 11: Mineral deposition initial stage of the L. Vannamei.

Figure 12: Severe mineral deposited on L. vannamei.

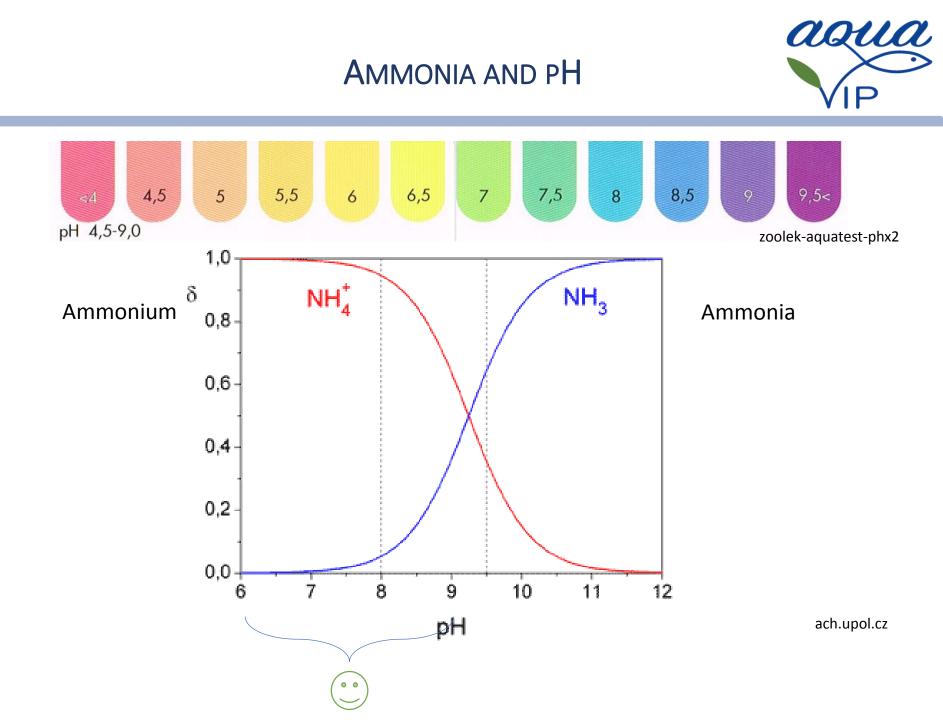
(Sakthivel et al., 2014)

SALINITY (DENSITY)

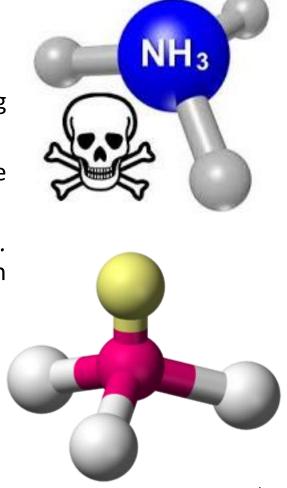
- During RAS operating salinity is controlled by adding the water from the spare tanks. The spare water tanks should be filled with water with lower salinity then in the system.
- It should be remembered that water salinity stabilizes a few hours after adding salt.

Light

- Direct sun or moon light may cause algae to grow (even low natural lighting). Unless algae do not harm the shrimp, they increase the cost and time of keeping tanks clean.
- The light : dark regime must be set (e.g. 14 h : 10 h). It is recommended to set light phase for 12 h minimum.



- The oxygen concentration is measured directly or by measuring the RedOx potential;
- Aeration by immersion diffusers and aerators;
- Oxygen is consumed by the shrimp, but also by the bacteria in the biological filter;
- <u>Aeration naturally increases the pH of the water.</u>



AMMONIA AND NOX

- Ammonia is a product of the metabolism of amino acids;
- Ammonia is toxic to living organisms, irritating;
- The lethal concentration (LC50) in white shrimp during 96-hour exposure is 1.20-2.95 mg / L,
- The concentration of NH3-N 0.45 mg / L reduces the growth rate of shrimp by 50% (Boyd 2013);
- Ammonia incl. significantly reduces the resistance of *L.* vannamei to selected bacterial infections (Liu and Chen 2004);

NOx is even more dangerous than ammonia, especially in water with a low pH, the nitric acid is formed.

http://bioaqua.vn

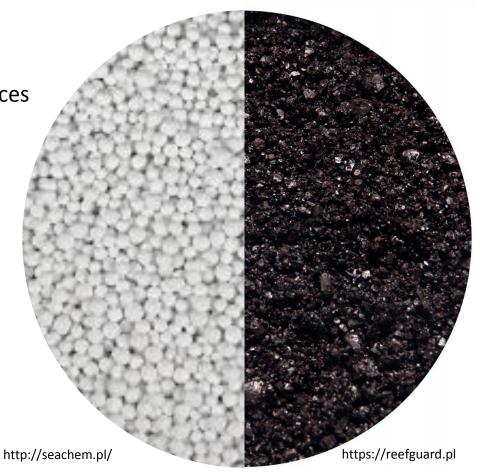
DEVELOPMENT OF THE BIOLOGICAL FILTER

Development of the nitrification deposit :

- Filling the tank with biologically stable water;
- The use of filter media with bacteria cultures;
- Addition of bacterial cultures;
- Adding food to the tank before introducing organisms;
- Addition of pure ammonia (pH> 7) or ammonium chloride (pH <7).

*Size estimation of the biological filter in planned RAS.

Generate ozone - not only kills pathogens, but also supports biological filtration. www.bersatuharga.id



OTHER NUTRIENTS

Nutrient control is crucial in preventing the growth of algae biomass in the system.

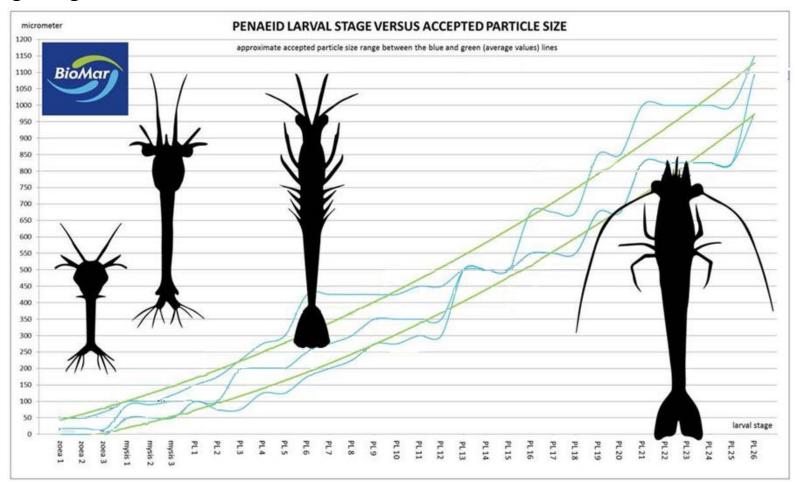
- high-performance absorbent;
- no influence on the pH of the water;
- does not release hazardous substances into water (e. g. aluminum);
- Phosphates PO₄³⁻
- SiO₂ silicates

Feeding

Juvenile shrimp should be feed with 15-20% of weight per day. For adult shrimp smaller feed dose should be provided 3.4-5%.

For 100 juvenile shrimps (3 g/spec.) 15 % ww ~ 45 g/day. For 100 shrimps (6 g/spec.) 3.5 % ww ~ 21 g/day.

Regular shrimps fresh mass analysis allow recalculation of the day dose setting of automatic feeders.



	Size (mm)	Proteins (%)	Lipids (%)	Ash (%)	Fiber (%)	Phosphorus (%)	Moisture (%)	HUFA (%)	Cholesterol (%)
GEMMA Diamond	0.8-1.5	57	15	10.5	0.2	1.6	No inf.	No inf.	No inf.
CreveTec PL1000	1.0-1.5	min 54	min 12	max 10	max 1	min 1,2	max 10	min 1,6	min 0,5

Parameters of feeds used in trials

 \sim 5 g specimens can be feed with granules or pellets. Smaller animal should be given ground feed.

BioMar, changed

CANNIBALISM

- In highly transparent water, shrimps can get stressed and attack each other.
- Animals should be feed during first hours of placement to avoid cannibalism. Size and shape of feed need to be suitable to shrimps.
- To avoid cannibalism, shrimps with visible injures or wired behaviour and dead shrimps should be removed from the tanks.
- Stocking densities need to be kept low to prevent cannibalism and rapid growth.

Wu, J. L., Namikoshi, A., Nishizawa, T., Mushiake, K., Teruya, K., & Muroga, K. (2001). Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. *Diseases of aquatic organisms*, *47*(2), 129-135.

SHRIMPS HARVESTING

Shrimps from a tank should be collected rather fast. The stock should be 'ice killed' immediately on harvest and stored in ice.

Specimens chosen to nutrition value analysis should be measured (BL) and frozen in -20 °C or -80 °C.

UTILIZATION OF WATER FROM TANKS

In RAS system, wastewater from shrimp culture is reused after it has been treated in various ways.

All water from tanks should be drain to sterilizer for UV radiation. Also, water from cleaning should be radiated before drain.

Every pollution incident and it must be reported to the local authority.

Water disinfection is conducted by ozonation or UV irradiation.

THE FIRST EXPERIMENTAL SHRIMP FARM IN POLAND

- post-larval stages shrimp (imported from the USA), SPF (specific pathogen free),
- ~ 500 per tank,
- temperature: 25 °C,
- salinity: 29 (Tropic Marin[®] ZooMix Sea Salt with high content of calcium and magnesium),
- lighting 14 h: 10 h,
- food: Gemma Diamond 0.8-1.5 mm (Scretting, Norway) / CreveTec PL 1000 (Creve Tec, Belgium),
- feeding frequency: 6 times a day,
- control of water parameters (NH₄⁺, NO₂⁻, NO₃⁻, PO₄³⁻, SiO₂, pH, T, Q, Red-Ox).

Technical report Deliverable 5.2 Evaluation of potential of crustacean production in RAS in Pomerania

University of Gdańsk National Marine Fisheries Research Institute

http://aquavip.edu.pl

V NOINGRES RYBNY 12 13 W 2018

Zdjęcie: Piotr Kendzierski