

Marine Research Institute

European Regional Development Fund

EUROPEAN UNION

Shrimp aquaculture

marc

 Consumption and demand is increasing • Environmental problems with traditional pond aquaculture Europe Shrimp Market 1.1% Penaeus chinensis Penaeus vannamei Fleshy prawn (6) Whiteleg shrimp (2) Penaeus monodon Market Breakup By Species Giant tiger prawn (1) CAGR Penaeus vannamei Penaeus stylirostris Penaeus indicus (2019-2024) Penaeus merquiensis Blue shrimp (5) Indian white Penaeus monodon Banana prawn (7) prawn (3) Penaeus japonicus Macrobrachium rosenbergii Kuruma prawn (4) others 1 = Google Inc (2016), 2 = Ictioterm (2016), 3 = Alphaimpex (2016), 4 = Metapenaeus monoceros Metapenaeus ensis Balik Vadisi (2016), 5 = Naked Finn Speckled shrimp (9) Endeavour Prawn / (2016), 6 = Weblio (2016), 7 = Food University (2016), 8 = Fish Gov (2016), Greasyback shrimp (8) Penaeus vannamei dominates the market, 9 = Himasper (2016)

holding the largest share.

Whiteleg shrimp

- Litopenaeus vannamei
- Pacific Ocean species
- Grow up to 230 mm
- Before establishment of aquaculture, coastal and off-shore fishery supplied the production

Development of shrimp aquaculture

- Shrimp aquaculture started in 1973 in USA from stocks of Panama
- Guidelines for the provision of healthy shrimp stock material for the US industry in 1989 as part of the US Marine Shrimp Farming Program.
- Specific virus diseases, especially the White Spot Syndrome Virus (WSSV) outbreaks in 90's from Asia
- Specific pathogen resistant strains developed in Hawaii

	Most importa	a <mark>nt</mark> an <mark>d d</mark> eva	stating Disea	ases:	1995	adakitan	19	93 todares - surg Jepen
	Viral Diseases	Spawner – isola mortality virus (S	ted Ba SMV) gla	culoviral midgut nd necrosis virus	USA 1998		^{Gilia}	199
	Lymphoid organ Parvo- like virus (LOPV) Syndrome Virus		(BMNV) Baculovirus penaei (BP)	(BMNV)	Central/South America	1994 1996	turn 11	9 92
-	Rhabdovirus of penaeid shrimp (RPS)	(WSSV) Taura Syndrome	Infectious Hypodermal and	Monodon Baculovirus (MBV)	1999 Mexico	Selarita	1996 2	000
7.	Lymphoid organ vacuolization virus (LOVV)	Virus (TSV) Hematopoietic Virus (IHHNV)	Virus (IHHNV) Gill-	Hepatopancreatic Parvovirus (HPV)	2011 Saudi Arabia	1996	Malayua Salayua Sagaay 1994	
S.,	Yellow Head Virus (YHV)		associated virus (GAV)			Outbreak history of WSSV	Geryle	in Australia

- SPF (Specific Pathogen Free) certified suppliers
 - USA suppliers leads the market
 - Growing opportunities in Europe
- Supply of **PL 10-15**

PL supply

- Air freight up to 36h with reasonable survival
- Acclimation importance
- Feeding
 - Live Artemia prey
 - Sufficient prey density
 - Starter artificial feed

PENAEID

Panther

Culture parameters

Target water quality values

Temperature	28 - 30° C 24 / 20		
Oxygen	5,0 – 9,0 ppm 1 mg/L		
Oxygen saturation	80-100 %		
Carbon dioxid	<20 ppm		
рН	7,0-8,3 <6.5/>10		
Salinity	0,5 – 35 ppt > 15		
Chloride	>300 ppm		
Natrium	>200 ppm		
Iron	<1 ppm		
Total hardness (CaCO3)	>150 ppm		
Ammoniua (als NH3)	<0,03 ppm		
Nitrite	<1 ppm		
Nitrate	<220 ppm		

NH₃, (%) NH⁺(%) 10 11 pН

Critical values

(ppm = parts per million, ppt = parts per thousand)

Feeding, FCR, growth, survival

- Feeding should be constant
- FCR <2 (1.5-2)
- Moulting an issue
- SGR ~1.6 g/week
- Stocking density 5-7.5 kg shrimps/m² tank
- Under favorable husbandry conditions, a survival rate of 60% from PL to harvest is achievable in a commercial recirculation plant.
- Beginner's effect

First shrimp RAS in Lithuania

- Pilot infrastructure created within **InnoAquaTech** project.
- RAS for L. vannamei shrimp cultivation integrated with renewable energy sources at KU Business Incubator
- The goal is to acquire shrimp cultivation knowledge and to optimize growth technology for local conditions.

TECHNOLOGIJŲ PARKAS

Aquaculture Competence Center

- Established in 2018 by Klaipeda University and Klaipeda Science and Technology Park
- Aims to develop shrimp RAS technology and commercialize acquired know-how supporting local businesses.

General parameters of the system:

- Artificial saltwater RAS
- Uses solar energy
- System setup in two rooms
- Water volume $\sim 40 \text{ m}^3$
- Daily water loss $\sim 2\%$ (so far)
- 8 rearing tanks, surface area ~29 m²
- Max yield/cycle ~145 kg (5kg/m²)
- Electricity consumption 5 kW/month

- Mechanical (drum) filter

SER GAAS

aqua

221

Ke

- Biological filter
- Sump
- Protein skimmer
- Denitrification filter
- Oxygenation cone
 - Heater
- Monitoring and control system
- Salt water preparation system

Standard RAS, with some specifics

- Devices should be resistant to saltwater corrosion (glass fiber, plastic, stainless steel)
- Artificial water salting
- Protein skimmer
- Denitrification

• Temperature – 28.5 (28-30)°C

Water quality in RAS

- Salinity 15-16 ppt
- Oxygen 70-90%, some drops to 40-50%
- pH-7,6-8,1
- Mn 351 µg/l; Fe 70 µg/l;
- NH₄ 0.04 mg/l (some short increases to 0.32-0.85 mg/l)
- Good nitrification, problems with denitrification
- Some increase in algae and nematode growth followed by ozonizer failure

Feeding manually x4/day Growth rate 1.26 g/week Mortality ~60-65 % High cannibalism observed Jumping issue

Cultivation days

Distributed into 5 tanks (1000 ind./tank)

• Growth to the market size took 5 months and average size was 24.3±6.4 g

• Very poor transportation survival – \sim 50 %

- Stocking density 2,5-3 kg/m²
- Total harvest 80 kg

of 15 000 PL15

• FCR - 1,9-2,0

First results of growing L. vannamei

60

First harvest

Technology optimization tasks

- Denitrification filter performance
- Water quality optimization pH control
- Feeding management Automatic belt feeders
- Stress reduction Light regime
- Reduce mortality improve production
- Diseases? Possibly low intensity vibriosis
- Unequal growth rate during first months
- Shrimp tank design extra surface area
- Water preparation salt source

Technology optimization – extra surface K • Shrimp tank design – extra surface area Shrimp tower concept

aqua

Technology optimization – improved gro

Sorting experiment (+feeding management)

- High growth rate sustained market size in 4 months
- High mortality and compensatory growth in a group of small ones
- But only the harvested biomass matter!

Technology optimization – improved gro

Economic performance of shrimp RAS?

- Fresh shrimp is a luxury product
- The production is costly
- What are the OPerating EXpenses?
- Heating was not as crucial as it was thought initially
- High operational costs for salt

- Solutions (that we are dealing with):
- Low cost salt mixture LCSM: (Na, Mg, Ca, K chlorides, Mg sulphate) (Galkanda-Arachchige et al., 2020)
- Geothermal brine

aqua

题

Geothermal solution for water salting?

- Geothermal brine seems promising solution
- Western Lithuanian resources (110 g/L) from 1300 m deep Cambrian aquifer, which is highly rich in sodium, calcium, magnesium and other, including trace, elements.
- Geothermal water closely resembles marine water composition
- Some trace elements of concern are present at higher concentrations

Klaipeda University

Marine Research Institute

Thank You!

Nerijus Nika Fisheries and Aquaculture Laboratory Marine Research Institute of Klaipeda University nerijus.nika@apc.ku.lt