

OPTIMIZATION OF GROWTH CONDITIONS OF *LITOPENAEUS VANNAMEI* IN CLOSED AQUACULTURE SYSTEM

Prepared by: Jonas Lelys Group : JNBI19 Scientific guide: dr. Nerijus Nika

Klaipėda, 2021

Relevance of the work topic

The production of Pacific white shrimp (*Litopenaeus vannamei*) accounts for more than 70% of global shrimp production and is the most economically important crop of shrimps in the world.

Fig. 2 Personal photo.

Fig. 1 Personal photo.

The aim and tasks of the work

Work objective:

To evaluate the peculiarities of growth, stress tolerance and mortality of whiteleg shrimps in a closed aquaculture system by optimizing the breeding technology for sorting shrimps.

Tasks:

- 1. To determine the growth characteristics of *L. vannamei* shrimps in the recirculating aquaculture system.
- 2. To evaluate the effect of shrimp sorting on growth efficiency and mortality.
- 3. To evaluate the mortality of *L. vannamei* shrimps under the stress of procedures.

Klaipėdos universitetas

Jūros tyrimų institutas

• At the end of the experiment, the mean body weight of shrimps was R1D 23.29 ± 4.25 g, R2D 24.29 ± 3.82 g, RM 23.13 ± 5.14 g and Kk 24.87 ± 4.75 g

Fig. 3 Average weight change of shrimps over time.

- The mean length of the shrimps at the beginning of the experiment was R1D 4.68 ± 0.30 cm, R2D 4.63 ± 0.25 cm, RM 4.13 ± 0.27 cm, and Kk 4.42 ± 0.35 cm.
- At the end of the experiment, the mean length was R1D 14.68 \pm 0.90 cm, R2D 15.11 \pm 0.74 cm, RM 14.67 \pm 2.21 cm and Kk 15.07 \pm 0.94 cm.

Fig. 4 Average length change of shrimps over time.

Fig. 5 Distribution of length to weight ratio of study groups.

Klaipėdos universitetas

Jūros tyrimų institutas

Fig. 6 Percentage survival of shrimp.

FCR

Fig. 7 Food conversion coefficient of the study groups.

Klaipėdos universitetas

Jūros tyrimų institutas

Fig. 8 Percentage of shrimps dead during measurement.

Dead individuals did not differ significantly from group weight and length averages.

Fig. 9 Weight of shrimps dead at the time of measurement.

Fig. 10 Length of shrimps dead at the time of measurement.

Klaipėdos universitetas Jūros tyrimų

institutas

Conclusions

- 1. In a closed aquaculture system, after the optimization of the technology, the weight gain of white shrimps per day was 0.29 ± 0.1 g. Within 129 days, the shrimp reached a weight of 24.00 ± 5.14 g and an absolute length of 15.00 ± 1.21 cm.
- 2. The sorting of shrimps did not have a clear positive effect on aquaculture production, the effect was complex. The growth rate, mean size at the end of the experiment (p > 0.05), mortality, and final biomass achieved in the control group were insignificantly lower than in the group of sorted large shrimps.
- 3. In the group of small sorted individuals, a high mortality rate of 59.3% was recorded. This led to a more intensive compensatory growth of the remaining shrimps and at the end of the experiment the mean weight and length of the shrimp were similar in all pools (p > 0.05). However, the total achieved biomass was 52.63% lower than in the control group, and the sorted large groups achieved 8.85 10.10% higher biomass than in the control group.

Conclusions

- 4. Unless the problem of high mortality in sorted small shrimps is resolved, the benefits of a complex juvenile sorting process in commercial-scale production remain questionable.
- 5. Significant mortality due to measurement procedures was found from 45 to 73 days of the experiment, with an average of 11.5 ± 5 and 13 ± 4.7 deaths in the sorted large shrimp groups, 22 ± 4.3 in the sorted small shrimp group and $21 \pm 7,7$ in the control unsorted shrimp group. Sensitivity to procedural stress was relatively insignificant up to 45 days of the experiment and after 73 days, when it averaged 4 ± 2 individuals. The highest mortality was on the 73rd day of the experiment in the control and sorted small shrimp groups of 30 ± 2 .