

| European | Regional | Development | Fund

EUROPEAN UNION

Disease and parasites in aquaculture

University of Rostock Aquaculture & Sea-Ranching Faculty of Agricultural and Environmental Sciences

Presenter: M.Sc. Xaver Neitemeier-Duventester Included scientific staff: Prof. Dr. Harry Palm

Prof. Dr. Harry Palm Dr. Patrick Unger Dr. Stefan Theisen

Traditio et Innovatio

Contents:

- Introduction
- Viral disease
- Bacterial disease
- Fungi
- Parasites
- Diagnostic
- Treatment

Why should we talk about disease and parasites in aquaculture?

- May cause mass mortalities
- May cause illness in human

Wich kind of pathogenes are important for aquaculture

- Virus
- Bacteria
- Fungi
- Parasites

Bioninja.com

Acellular Pathogen-Virus

Viral diseases

- Koi-Herpesvirus (KHV), Cyprinid herpesvirus 3
 - Mortality rates: up to 80 % 100 %
 - In a period of 24 hours to 14 days

Bacterial pathogens

Bacterial diseases

- Omnipresent in the water
- Stress and abverse condition may trigger the outbreak
- Secondary infection cause by bacterial wounds

Phyla	Genus	Characteristics	Diseases
Proteobacteria	Aeromonas	Gram negative, facultative anaerob	Furunculosis, bacterial eye disease
Firmicutes	Enterococcus	Gram positive, facultative anaerob	Urinary tract infections, sepsis
Bacteriodetes	Flavobacterium	Gram negative, obligat anaerob	Cold water disease

Bacterial pathogens

Erythrodermatitis of cyprinids: Aeromonas salmonicida ssp. nova

- All cyprinids and may others
- Summer disease, water temperature > 12 °C

Traditio et Innovatio

- Contact infection, transfer via parasites e.g. carp lice, stocking density
- Symptoms: Red ulcerations, low mortality
- Treatment: Wound healing, Antibiotics / Sulfonamids, Furunculoses-vaccination

Menanteau-Ledouble et al. 2016

Bacterial pathogens

Furuncoloses: Aeromonas salmonicida

 Salmonids (Oncorhynchus mykiss, Salmo spp., Salvelinus spp.)

Traditio et Innovatio

- Low O2-content, Temperature > 14 °C, Stocking density, Stress
- Symptoms: Exophthalmus, No feed uptake, Apathic, Skin lesions and ulcerations
- Treatment: Water treatment, Antibiotics, Reduced feed, O2-saturation

Fungus pathogens

9

Fungi

- Water moulds/cotton moulds coused by Saprolegnia
- Tolerant to a wide range of temperature, 3–33 °C
- Diploid life-cycle (sexual & asexual reproduction)
- Necrosis of the Skin

Traditio et Innovatio

Parasites

Hypothetical simplified phylogenetic tree of eukaryotic parasites. Modified after W. Westheide & R. Rieger (2007).

Parasites - Protozoa

Protozoa

- Trichodina
 - Trichodinids are ciliates
 - Taxonomy difficult
 - Feed from bacteria and from host tissue
 - Only a part of the life cycle is recognizable (e.g. spores)
 - Common fish parasite in aquaculture systems worldwide
 - Regular treatments increase production costs

Unger 2019

Parasites - Myxozoa

Myxzoa

- 1350 species, indirect life cycle
- E.g. Myxobolus cerebralis
 - Tubifex Schizogony, Gamogony, Sporogony (Triactinomyxosporeans)
 - Fish (Schizogony)
 - (Birds)
- Deformation of the vertebrae
- Deformation of the cartilage
- Black tail
- Impact onto the nervous system

Baur et al. 2010

Parasites - Digenea

Digenea

- Class of Platyhelminthes soft-bodied flatworms
- Internal parasites of all classes of vertebrates
- Indirect life-cycles 2, 3 or 4 hosts
- Fish serve as final or intermediate host
- Always snails as first intermediate hosts

Parasites - Digenea

Life-cycle Clonorchis sinensis

- Egg
- Miracidium
- Sporocyst
- Radia
- Cercaria
- Adult

Parasites - Digenea

• Abundant in marine and freshwater habitats (hundreds of species)

Traditio et Innovatio

- Richest group of marine metazoan parasites (so far!)
- Expect that 'your' marine/aquatic animal is infected by a trematode or two

Traditio et Innovatio

VIP

Differential Diagnoses

- Flatten habitus
- Oral and ventral suckers are typical but not guaranteed
- Always have a gut (bifurcate) that is closed
- Identifiable by specific reproductive organs

http://www2.biology.ualberta.ca

Monogenea

- Class of Platyhelminthes soft-bodied flatworms
- Ectoparasites
- Life-cycles direct one host
- Abundant in marine and freshwater habitats (hundreds of species)
- Expect that 'your' marine/aquatic animal is infected by a monogenean or two
- On the gills, skin, under the fins, nostrils and rarely inside the body

- Between 0.2 mm 2 cm long as adults
- Soft-bodied, tegument with/without spines
- Haptor for attachment located posterior
- Haptor uses a combination of marginal and ventral hooks, suckers or cement secretion
- Gut simple with a pharynx, an oesophagus and one or two intestinal caeca
- Two excretory vesicles and systems of ducts and protonephridia (= flame-cells)

• Life-cycle strategy - lack of asexual reproduction (for high reproductive rate) means that monogeneans must be efficient in finding their hosts.

Traditio et Innovatio

- Eggs operculate often have complex shapes and filaments
- Main strategies are:
 - Synchronising hatching of eggs with host biology
 - Hatching in the presence of host-derived chemicals (e.g. From skin)
 - Phototaxis
 - Attaching eggs to host or release into the water column

In large numbers, monogeneans can cause considerable wounds

Traditio et Innovatio

- Cause secondary infections by viruses, bacteria and fungi
- Those that feed on blood can induce emaciation, lethargy and lethal anaemia

Differential Diagnoses

- Flatten habitus
- Oral suckers in many cases
- Always have a gut (bifurcate) that is closed
- Identifiable by specific reproductive organs
- Opisthaptor with clamps, hooks and suckers for attachment

alchetron.com

Cestoda

- Class of Platyhelminthes soft-bodied flatworms
- Neodermis, no digestive tract
- Indirect Life-cycle 3-4 hosts
 - Copepodes mainly serve as first intermediate hosts
- <u>Abundant</u> in marine and freshwater habitats
- In the marine system, adults as well as larvae are common in fish
- Unsegmented Amphilinidea and Gyrocotylidea
- Segmented Eucestoda with a scolex and proglottids / segments

Ligula intestinalis, (Photo: Pikalov)

• Egg – discharged either in open water or in intestine of definitive host (proglottids, segments)

Traditio et Innovatio

- Coracidium/Oncosphere a free-living motile form, it is covered with cilia, ingested by first intermediate host, mainly a copepode
- Procercoid An elongated sac, often still contains the six hooks, develops inside the first intermediate host
- Plerocercus
 – A larval form with or without developed anterior scolex end or partial development
- Adult the fully developed mature stage, it is capable of sexual reproduction

Traditio et Innovatio

Life-cycle Diphyllobothrium latum

Differential Diagnoses

- Flat habitus
- Segmented
- Apical suckers
- No intestine
- As larva often in capsules or cysts (blastocyst)
- As adult segmented in scolex and strobila

25

Parasites - Hirudinea

Hirudinea

- Ectoparasites
- Suckers for attachment
- free swimming
- Direct life-cycle
- Sucking blood
- Vectors of kinetoplastid flagellates
- Hermaphrodite
- Secondary infections

Parasites - Crustacea

Crustacea

- Phylum of Arthropoda
- Ectoparasites, some meso- and some endoparasites
- Life-cycle direct or indirect
- Rich group of marine metazoan parasites
- Expect that 'your' marine/aquatic animal is infected by a crustacean or two
- On the gills, skin, under the fins, nostrils and more rarely inside the body

Traditio et Innovatio

Parasites - Crustacea

Lepeophtheirus salmonis - Salmon lice

 Tremendous problem in finfish aquaculture in Norway and Chile with millions of US\$ loss per year, biggest obstacle in the further development of Salmon aquaculture !!!

Revie et al. 2009

Parasites - Crustacea

Differential Diagnoses

- Segmented, legs and egg sacs
- Nauplii stages
- Direct or indirect life cycle
- Always have complete digestive system

Argulus mondoi after Fryer 1959

Parasites - Acanthocephala

Acanthocephala

- Adults only in the intestine of vertebrates and probably squids
- About 1,150 species
 - more than 500 species with fish as final hosts
 - more than 20 species with fish as intermediate hosts
- Adults 2mm up to 70cm (usually a few mm)
- Complex life-cycles
- At least 1 intermediate host (heteroxenous)

rugusavay.com

Traditio et Innovatio

Parasites - Acanthocephala

- Pseudosegmented
- Proboscis
- Male and female
- Round habitus

Wikipedia.de

Spektrum.de

Parasites - Acanthocephala

32

Differential Diagnoses

- Rounded
- Move like a dangling worm
- Proboscis with hooks
- No intestinal tract
- Male and females
- As larva often in capsules
- Pseudosegmented

Parasites - Nematoda

Nematoda

- Two classes: the Enoplea (=Adenophorea; =Aphasmidia) and the Rhabditea
- 40,000 species in 256 families
- 125 families of zoonotic nematodes
- One of the largest and most successful groups in the animal kingdom
- Complex life-cycles

frescoydelmar.com

- Minimum 2 different hosts
- But only 1 generation
 - direct and heteroxenous (rarely 1 host = monoxenous)
- Females and males: sexual reproduction:

 →adult egg L1 L2 L3 L4 adult

Traditio et Innovatio

• Typical endoparasites, here Anisakis spp.

Klimpel et al. 2010

 Longitudinal muscles allow a weaving, snake-like motion

Traditio et Innovatio

- Epidermis (synticium) produces several layers of a collagenous cuticula
- Cuticle + muscle = hydroskeleton
- Renette: excreting salt for osmoregulation

Parasites - Nematoda

Differential Diagnoses

- Round, move like a snake
- Hydrostatic skeleton
- Entire intestine with mouth and anus
- As larva often in capsules
- Not segmented

How to identify

Clinical picture

Ichtyhophthirios- white spot disease Pathogen: Ichthyophthirius multifiliis Andrews et al. 2005

White/silver bream (*Blicca bjoerkna*) Digenea cysts in the mesenteries and black spot disease

Take Home Message

Take Home Message: Management

How to reduce endoparasite burden:

Traditio et Innovatio

- Use pellet Feed; feeding only with cleaned trash-fish (without head and inner organs)
- Use of chemicals and hygenical treatments, with are authorized by the European council (regulation EEC no. 2377/90)

Parasite group	Chemical	Dosage/Treatment
Acanthocephalans	Bithionol	0.2g/kg fish, mixed with feed
Helminths	Ivermectin	2.5mg/100kg fish, twice a week mixed with feed
Cestodes	Niclosamid	100-200mg/kg fish, mixed with feed
Eubothrium Diphyllobothrium	Praziquantel	500mg/100kg fish, mixed with feed

Take Home Message

Take Home Message: Management

Traditio et Innovatio

How to reduce ectoparasite burden

- Way more difficult and demanding
- Millieu switch (fresh water Fish in salt water/ Marine fish in fresh Water)
- Monoxene lifecyles lead to higher infestation rates

Parasite group	Chemical	Dosage/Treatment
Ectoparasites	Formaldehyde	0.25mg/l, bath treatment (1-2h)
Ectoparasites	Copper sulfate	0.5mg/l, bath treatment (1-2h)
Monogenea	Levamisol	50ml/l, bath treatment (2h)
Copepods	Triclorphon	5mg/l, bath treatment (30min)
Ectoparasites	Acetic acid	1-2mg/l, dip treatment (1-10min)

Outlook

Traditio et Innovatio

Why further research is important

- New treatment
- Saving medicals and chemicals
- More and more avoidance of antibiotics
- Risk of multi- resistant lines / pathogens

Thanks to the organisers of the summer school and my colleagues

Contact details:

University of Rostock (UROS)

Facultuy of Agricultural and Environmental Sciences

Department Aquaculture & Sea-Ranching

Justus-von-Liebig-Weg 6

18059 Rostock

Germany

Xaver Neitemeier-Duventester

Xaver.Neitemeier-Duventester@uni-rostock.de

Phone: +49-381-498 3737 42